TPAC White Papers

Improvement of the total focusing method using an inverse problem approach

Imaging using the total focusing method (TFM) is a popular tool, which is becoming a standard, for nondestructive testing and evaluation. From full matrix capture data, it consists in focusing at each point of a defined reconstruction zone. It is generally more efficient than conventional phased array focusing, which only focuses at a few points. Despite its good image quality, TFM suffers from a lack of resolution and contrast, in particular in the case of close defects or in scattering materials. The TFM algorithm can be formalized as a linear operation on the data. The contribution of this paper is then to include a sparsity- inducing penalization to the TFM procedure. The reconstructed image is therefore supposed to contain only a few non zero values, corresponding to flaws or geometry. The final image is obtained by minimizing a penalized least-squares criterion within an iterative procedure. A first example uses data acquired from two close side drilled holes (SDH) in an aluminum block. The proposed algorithm shows good echo separation whereas the reference method suffers from overlapping, demonstrating resolution improvement. A second example comes from a stainless steel specimen, with high scattering noise level. The proposed method reduces the scattering noise and improves the contrast.

Click Here To View PDF Version

 

Total focusing method for ultrasonic imaging

This work deals with advanced and fast imaging techniques using phased array probes for non destructive evaluation or medical imaging. These methods employ a large amount of summations in order to focus at each pixel of the reconstruction image, which often represent a prohibitive computational cost. We present two acceleration methods, i.e. GPU computation and a migration approach. The GPU computing uses massively parallel computations. The migration approach works in the wavenumber domain and permits a significant improvement in terms of image quality. In this paper, we demonstrate the benefits of these techniques with experimental data captured from an aluminum block containing artificial flaws.

Click Here To View PDF Version

 

Total focusing method imaging for flaw characterization in homogeneous media

Phased array imaging using multi-element probes is an efficient technique to detect and characterize flaws in industrial components. In particular, the total focusing methods are advanced approaches that optimally focus at each point of the reconstruction zone. They generally outperform conventional imaging in terms of reconstruction quality and computational cost. They need all transmitter-receiver pair signals of an array of transducers. Then, the post-processing is performed by computing the proper propagation times at each reconstruction point and by applying coherent summations over all elements. A migration approach working in the wavenumber domain is analogous for total focusing. In this paper, we show experimental results of flaw characterization in homogeneous media using those total focusing methods. We demonstrate that the migration approach leads to a better signal to noise ratio and a better resolution for side drilled hole and horizontal slit reconstruction. On the other hand, the standard total focusing method achieves a better imaging of angled slits

Click Here To View PDF Version

 

Fast total focusing method for ultrasonic imaging

Synthetic aperture focusing technique (SAFT) and total focusing method (TFM) have become popular tools in the field of ultrasonic non destructive testing. In particular, they are employed for detection and characterization of flaws. From data acquired with a transducer array, those techniques aim at reconstructing an image of the inspected object from coherent summations. In this paper, we make a comparison between the standard technique and a migration approach. Using experimental data, we show that the developed approach is faster and offers a better signal to noise ratio than the standard total focusing method. Moreover, the migration is particularly effective for near-surface imaging where standard methods used to fail. On the other hand, the migration approach is only adapted to layered objects whereas the standard technique can fit complex geometries. The methods are tested on homogeneous pieces containing artificial flaws such as side drilled holes.

Click Here To View PDF Version

 

Full Matrix Capture with a Customizable Phased Array Instrument

In recent years, a technique known as Full Matrix Capture (FMC) has gained some headway in the NDE community for phased array applications. It’s important to understand that FMC is the method that the instrumentation acquires the ultrasonic signals, but further post-processing is required in software to create a meaningful image for a particular application. Having a flexible software interface, small form factor, excellent signal-to-noise ratio per acquisition channel on a 64/64 or 128/128 phased array module with FMC capability proves beneficial in both industrial implementation and in further investigation of post-processing techniques. This paper will provide an example of imaging with a 5MHz linear phased array transducer with 128 elements using FMC and a popular post-processing algorithm known as Total Focusing Method (TFM).

Click Here To View PDF Version

 

Phased Array UT Platform for Customizing Dedicated and Automated NDT Applications

Small form factor, excellent signal-to-noise ratio (SNR), fast data throughput and an easy to integrate electronics are just some of the important aspects for automated phased array inspection systems. Furthermore, a software application programming interface (API) is crucial for creating a dedicated and simple software front end. This paper will present how a family of phased array ultrasonic modules can meet the demands of the most unique and innovative industrial and research based phased array applications.

Click Here To View PDF Version